A Parameter–uniform Finite Difference Method for Multiscale Singularly Perturbed Linear Dynamical Systems
نویسندگان
چکیده
A system of singularly perturbed ordinary differential equations of first order with given initial conditions is considered. The leading term of each equation is multiplied by a small positive parameter. These parameters are assumed to be distinct and they determine the different scales in the solution to this problem. A Shishkin piecewise–uniform mesh is constructed, which is used, in conjunction with a classical finite difference discretization, to form a new numerical method for solving this problem. It is proved that the numerical approximations obtained from this method are essentially first order convergent uniformly in all of the parameters. Numerical results are presented in support of the theory.
منابع مشابه
Numerical method for a system of second order singularly perturbed turning point problems
In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملA Parameter–Uniform Finite Difference Method for a Singularly Perturbed Linear Dynamical System
A coupled system of two singularly perturbed ordinary differential equations of first order with the prescribed initial values are considered. The leading term of each equation is multiplied by a small positive parameter and the parameters may differ. The solution exhibits overlapping layers. A Shishkin mesh is constructed. A classical finite difference scheme applied on this mesh (which is pie...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کامل